that all possible trigonal-bipyramidal isomers are present, although nmr work has shown no sign of PF₈ nonequivalence.²⁸ On the basis of the calculated 21% *cis*, 23% *trans*, and 56% *vic* isomer composition,¹⁶ an average angle of about 128° is estimated to correspond to the 98 Hz ³¹P-³¹P coupling.

Acknowledgments.—The authors thank Dr. J. F. Nixon for making available to us the results of his in-

dependent calculations of ${}^{2}J_{PP}$ in several of the PF₃ complexes and R. D. Bertrand for obtaining some of the spectra. F. O. and J. G. V. thank the National Science Foundation for support of this research in the form of grants toward the purchase of the nmr spectrometers. R. J. C. acknowledges the financial assistance of the Atomic Energy Commission.

(28) C. A. Udovich and R. J. Clark, Inorg. Chem., 8, 1066 (1969).

Contribution from the Department of Chemistry, The University of California, Riverside, California 92502

The Polyhedral $B_6C_2H_8$, $B_7C_2H_9$, and $B_8C_2H_{10}$ Carboranes and Their C-Monomethyl and C-Monophenyl Derivatives

BY PHILIP M. GARRETT, JAMES C. SMART, GARY S. DITTA, AND M. FREDERICK HAWTHORNE

Received February 10, 1969

The pyrolysis of 1,3- $B_7C_2H_{18}$ at 215° in the absence of diborane yields the $B_6C_2H_8$, $B_7C_2H_9$, and 1,6- $B_8C_2H_{10}$ carboranes, while in the presence of diborane the yield of 1,6- $B_8C_2H_{10}$ is considerably enhanced. Isomerization of 1,6- $B_8C_2H_{10}$ to the 1,10- $B_8C_2H_{10}$ isomer occurs at 300°. Pyrolysis of 1,3-Na $B_7C_2H_{12}$ at 200° yields 1,7- $B_7C_2H_9$. The C-monomethyl and C-monophenyl derivatives of these carboranes are also described.

Recently, the preparation and characterization of the C, C'-dimethyl derivatives of 1,7-dicarba-*closo*-octaborane(8), 1,7-B₆C₂H₈, 1,7-dicarba-*closo*-nonaborane(9), 1,7-B₇C₂H₉, 1,6-dicarba-*closo*-decaborane(10), 1,6-B₈-C₂H₁₀, and 1,10-dicarba-*closo*-decaborane(10), 1,10-B₈C₂H₁₀, were reported.^{1,2} The results of X-ray diffraction studies and theoretical treatments of the C,C'-dimethyl derivatives of 1,7-B₆C₂H₈ and 1,7-B₇C₂H₉ have been reported^{3,4} by Lipscomb and coworkers. Dunks and Hawthorne⁵ have reported the low-pressure pyrolysis of 1,3-B₇C₂H₁₃ at 360° to give a 60% yield of 1,7-B₆C₂H₈. This paper describes the preparation and characterization of the 1,7-B₆C₂H₈, 1,7-B₇C₂H₉, 1,6-B₈C₂H₁₀, and 1,10-B₈C₂H₁₀ carboranes and their C-monomethyl and C-monophenyl derivatives.

Results and Discussion

Pyrolysis of 1,3-B₇C₂H₁₃.—The thermal decomposition of 1,3-dicarba-*nido*-nonaborane(13) near 215° in diphenyl ether solution produced 1,7-B₆C₂H₈, 1,7-B₇-C₂H₉, and 1;6-B₈C₂H₁₀ carboranes. The corresponding C-monomethyl derivatives were obtained by the same route while the C-monophenyl derivatives were obtained using benzene solvent. Vield and characterization data are presented in Table I. The almost equivalent yields of 1,7-B₆C₂H₈ and 1,6-B₈C₂H₁₀ carboranes and the low yield of 1,7-B₇C₂H₉ suggests that the predominant reaction is a disproportionation of $1,3-B_7-C_2H_{13}$ (eq 1) and that $1,7-B_7C_2H_9$ arises from the elim-

 $2(1,3-B_7C_2H_{13}) \longrightarrow 1,7-B_8C_2H_8 + 1,6-B_8C_2H_{10} + 4H_2 \quad (1)$

ination of hydrogen from 1,3-B₇C₂H₁₃ (eq 2).

$$1,3-B_7C_2H_{13} \longrightarrow 1,7-B_7C_2H_9 + 2H_2$$
(2)

When a continuous stream of diborane was passed through a diphenyl ether solution of 1,3-B₇C₂H₁₃ at 215°, the yield of 1,6-B₈C₂H₁₀ increased at the expense of 1,7-B₆C₂H₈ and 1,7-B₇C₂H₉. With excess diborane, 1,6-B₈C₂H₁₀ was the predominant product along with only trace amounts of 1,7-B₆C₂H₈ and 1,7-B₇C₂H₉ and a low yield of 1,7-B₁₀C₂H₁₂ (eq 3). Hydroboration of pure

$$1,3-B_7C_2H_{18} + B_2H_6 \longrightarrow 1,6-B_8C_2H_{10} + 1,7-B_{10}C_2H_{12}$$
 (3)

1,6-B₈C₂H₁₀ under the same conditions produced 1,7-B₁₀-C₂H₁₂ in moderate yield¹ and this may account for its appearance among the pyrolysis reaction products. The yield data for the pyrolysis of 1,3-B₇C₂H₁₃ and its C-monomethyl and C-monophenyl derivatives in the presence of diborane are presented in Table I. $1-C_6H_5-1$, $6-B_8C_2H_9$ could not be successfully prepared by pyrolysis of $1-C_6H_5-1$, $3-B_7C_2H_{12}$ in the presence of added diborane.

Thermal rearrangement of $1,6-B_8C_2H_{10}$ occurs above 300° to give a nearly quantitative yield of the $1,10-B_8-C_2H_{10}$ isomer.¹ The yield and characterization data for $1,10-B_8C_2H_{10}$ and its C-monomethyl and C-monophenyl derivatives are presented in Table I.

Isomers of Substituted $1,6-B_8C_2H_{10}$ Carboranes.—The infrared and ¹H nmr spectra of $1,7-B_6C_2H_8$, $1,7-B_7C_2H_9$, $1,6-B_8C_2H_{10}$, and $1,10-B_8C_2H_{10}$ and their C-monomethyl

⁽¹⁾ F. N. Tebbe, P. M. Garrett, and M. F. Hawthorne, J. Am. Chem. Soc., 90, 869 (1968).

⁽²⁾ R. E. Williams and F. J. Gerhart, ibid., 87, 3512 (1965).

⁽³⁾ H. Hart and W. N. Lipscomb, Inorg. Chem., 7, 1070 (1968).

⁽⁴⁾ T. F. Koetzle, F. E. Scarbrough, and W. N. Lipscomb, *ibid.*, 7, 1076 (1968).

⁽⁵⁾ G. B. Dunks and M. F. Hawthorne, ibid., 7, 1030 (1968).

			AND C	-MIONOPHE	N XL DE	RIVATIVES					
						,		Analysi	es, %	· · · · · · · · · · · · · · · · · · ·	
				-Yield, %						Found	<u> </u>
Compound	Mp, °C	Bp, °C	a	ь	с	С	н	в	С	н	в
$B_6C_2H_8$	29.0-30.0		25	0		d					
$B_7C_2H_9$	108.5 - 109.5		4	Trace	38	е					
$1,6-B_8C_2H_{10}$	145.0 - 146.0		19	29		19.91	8.29	71.80	20.26	8.34	72.18
1,10-B8C2H10	161.0 - 162.0		98^{f}			19,91	8.29	71,80	19.64	8.56	72.13
B ₈ C ₂ H ₇ CH ₃		101 - 102	24	0		32.45	9.08	58,47	32.21	9.06	58.25
B7C2H8CH3		138 - 139	1.5	Trace	56	g					
1,6-B8C2H9CH3		164 - 165	18	33		h					
1,10-B8C2H9CH3	39.5 - 40.5		98^{f}			26.75	8.98	64.27	26,18	8.88	63.72
$B_6C_2H_7(C_6H_5)$		233 - 234	19			55.54	6.94	37.52	55.46	7.18	37.14
$B_7C_2H_8(C_6H_5)$	37.0-38.0		4			i					
$1,6-B_{0}C_{2}H_{9}(C_{6}H_{5})$	50.8 - 51.5		20	J		48.45	7.13	44.05	48.82	7.40	43.83
$1,10-B_8C_2H_9(C_6H_5)$	42.0-43.0		98 ⁷			48.85	7.13	44.05	48.51	7.37	43.81

TABLE I YIELD AND CHARACTERIZATION DATA FOR B6C2H8, B7C2H9, 1,6-B6C2H10, AND 1,10-B8C2H10 AND THEIR C-MONOMETHYL AND C-MONOPHENYL DERIVATIVES

^a When prepared in the absence of diborane. ^b When prepared in the presence of diborane. ^c Pyrolysis of NaB₇C₂H₁₂ and NaB₇-C₂H₁₁(CH₃). ^d Mass spectrum calcd for ¹¹B₆¹²C₂¹H₅, 98.1184; found, 98.1177. ^e Mass spectrum calcd for ¹¹B₉¹²C₂¹H₉, 110.1356; found, 110.1356. ^f Prepared from its 1,6 isomer. ^e Mass spectrum calcd for ¹¹B₇¹²C₃¹H₁₁, 124.1512; found, 124.1508. ^h Mass spectrum calcd for ¹¹B₇¹²C₃¹H₁₂, 136.1681; found, 136.1681. ⁱ Mass spectrum calcd for ¹¹B₇¹²C₈¹H₁₃, 186.1669; found, 186.1665. ^j Phenyl derivative could not be hydroborated.

and C-monophenyl derivatives are presented in Tables II and III. Characteristic ¹¹B nmr spectra of these compounds are presented elsewhere as the C,C'-dimethyl derivatives.¹ The nonequivalence of carbon in the 1 and 6 positions of $1,6-B_8C_2H_{10}$ is clearly demonstrated by its infrared and ¹H nmr spectra and the ¹¹B nmr spectrum of the C,C'-dimethyl derivative.¹ The infrared spectrum of 1,6-B₈C₂H₁₀ contains two carborane C-H absorptions at 3120 and 3070 cm⁻¹ and the ¹H spectrum contains two resonances of equal area at τ 4.8 and 8.1, relative to tetramethylsilane. The 1,10- $B_8C_2H_{10}$, $1-C_6H_5-1$, $10-B_8C_2H_9$, and $1-CH_3-1$, $10-B_8C_2H_9$ carboranes have carborane C-H resonances in their ¹H nmr spectra at τ 3.1, 3.3, and 3.5, respectively. Hence, the 1,6-B₈C₂H₁₀ carborane C-H resonance at τ 4.8 in its ¹H nmr spectrum may be assigned with some assurance to the 1-position carborane C-H, and the resonance at τ 8.1 can be assigned to the 6-position carborane C-H. This information was most helpful in establishing isomer structures in the C-monosubstituted 1,6- $B_8C_2H_{10}$ carboranes. In the case of crude C-monophenylsubstituted 1,6-B₈C₂H₁₀, a single carborane C-H resonance in its ¹H nmr spectrum at τ 8.0 was observed which implies that the phenyl group is exclusively substituted in the 1 position. This is further supported by its infrared spectrum which contains a single carborane C-H absorption at 3020 cm⁻¹. Moreover, no separation was observed when C-monophenyl-substituted 1,6-B₈C₂H₁₀ was subjected to vapor-phase chromatography at 100° on a 1/8 in. \times 50 ft Apiezon L column. However, crude C-monomethyl-substituted 1,6-B₈C₂H₁₀ was easily separated into two components of areas 2:1 when subjected to vapor-phase chromatography at 100° on a 1/8 in. X 50 ft Apiezon L column. All attempts to separate and collect these two components using preparative-scale vapor-phase chromatography failed. The infrared spectrum of crude C-monomethyl-substituted 1,6-B₈- C_2H_{10} contained two carborane C-H absorptions at 3120 and 3050 cm^{-1} , which gives additional support that there are two isomers present. The ¹H nmr spectrum of the mixture of C-monomethyl-substituted 1,6- $B_8C_2H_{10}$ contains four C-H resonances. The C-methyl resonances occur at τ 7.2 and 8.7 and are of relative area 2:1, respectively. The carborane C-H resonances occur at τ 8.1 and 4.8 and are of relative area 2:1, respectively. Since the 1-position carborane C-H resonance of 1,6-B₈C₂H₁₀ occurs at τ 4.8 and the carborane C-H resonance in the 6 position of C-monophenyl and unsubstituted 1,6-B₈C₂H₁₀ carboranes occurs near τ 8.0, it seems probable that the 1-CH₃-1,6-B₈C₂H₉ and 6-CH₃-1,6-B₈C₂H₉ isomers are 2:1 in relative abundance, respectively. Pyrolysis of 1-CH₈-1,3-B₇C₂H₁₂ in both the absence and the presence of diborane produced the same relative abundance of isomers of the C-monomethyl-substituted 1,6-B₈C₂H₁₀.

Pyrolysis of NaB₇C₂H₁₂.—The pyrolysis of the sodium salt of the 1,3-B₇C₂H₁₂⁻ ion¹ in diphenyl ether solution at 200° yields 1,7-B₇C₂H₉, sodium borohydride, and unidentified yellow solids. The sodium borohydride produced was identified by its infrared and ¹¹B nmr spectra and attempts to identify the yellow residue proved unsuccessful. The yields of 1,7-B₇C₂H₉ and its C-methyl derivative were 38 and 56%, respectively. The pyrolysis of the sodium salt of the 1,3-B₇C₂H₁₁²⁻ ion⁶ under the same conditions as those employed with the monoanion gave 1,7-B₇C₂H₉ in 20% yield and sodium borohydride.

Experimental Section

Materials.—1,3-Dicarba-*nido*-nonaborane(13) and its 1-methyl and 1-phenyl derivatives were prepared by literature methods,^{1,7} Diphenyl ether was distilled under vacuum from calcium hydride, and all other solvents and reagents were reagent grade and used without further purification. Diborane was generated by the method of Brown.⁸

Methods.—The ¹¹B nmr spectra of the compounds reported here were recorded and were found to be sufficiently similar to the ¹¹B nmr spectra of the C,C'-dimethyl derivatives that they did not warrant reproduction here. The ¹¹B nmr spectra of the C,C'-dimethyl derivatives are reported elsewhere.¹ Infrared spectra were obtained on a Beckman IR-5 spectrophotometer and are presented in Table II. Proton nmr spectra were re-

⁽⁶⁾ M. F. Hawthorne and T. A. George, J. Am. Chem. Soc., 89, 7114 (1967).

⁽⁷⁾ P. M. Garrett, T. A. George, and M. F. Hawthorne, Inorg. Chem., 8, 2008 (1969).

⁽⁸⁾ H. C. Brown, "Hydroboration," W. A. Benjamin, Inc., New York, N. Y., 1962.

TABLE II

Infrared Spectra of $B_6C_2H_8$, $B_7C_2H_9$, $1,6-B_8C_2H_{10}$, and $1,10-B_8C_2H_{10}$ and Their C-Monomethyl and C-Monophenyl Derivatives

$B_6C_2H_8^a$

3080 w, 2925 s, 2580 s, 1458 m, 1375 m, 1205 m, 1122 s, 1045 s, 988 m, 974 m, 853 w, 822 m

$B_6C_2H_7CH_3^b$

3000 w, 2955 w, 2600 s, 1450 w, 1169 w, 1115 m, 1056 m, 975 m, 925 m, 836 w, 814 w, 752 w, 703 w, 668 w

$B_6C_2H_7(C_6H_5)^b$

3060 w, 2565 s, 1518 w, 1487 m, 1441 w, 1391 m, 1362 m, 1320 m, 1235 m, 1175 m, 1111 m, 1078 m, 1033 m, 1012 m, 945 w, 927 w, 828 m, 780 w, 745 m, 693 s

$B_7C_2H_9^a$

3075 w, 2875 s, 2570 s, 1450 s, 1365 s, 1145 m, 1122 s, 1097 m, 1058 w, 953 w, 979 w, 902 w, 776 w, 721 w

$B_7C_2H_8CH_3^b$

3100 w, 2580 s, 1450 m, 1295 w, 1113 s, 1068 m, 971 m, 893 m, 853 m, 803 m, 787 m, 670 m

$B_7C_2H_8(C_6H_5)^a$

3090 w, 2580 s, 1575 w, 1448 m, 1362 w, 1132 m, 1087 s, 965 w, 892 w, 858 m, 809 w, 787 m, 752 s, 692 s

1,6-B₈C₂H_{10^a}

3120 w, 3070 w, 2950 s, 2620 s, 1455 s, 1375 s, 1157 m, 1118 s, 1084 s, 995 s, 975 w, 942 s, 872 m, 853 m, 810 w, 672 s

1,6-B₈C₂H₉CH₃^{b,c}

3120 w, 3050 w, 2950 w, 2580 s, 1450 m, 1105 s, 1022 s, 958 s, 909 m, 893 w, 864 m, 689 s

$1,6-B_8C_2H_9(C_6H_5)^a$

3020 w, 2925 s, 2600 s, 1590 w, 1445 m, 1107 s, 1078 s, 985 m, 932 m, 917 m, 898 m, 883 m, 863 m, 757 s, 693 s

1,10-B₈C₂H_{10^a}

3120 w, 2930 s, 2585 s, 1450 s, 1375 m, 1237 w, 1195 w, 1147 s, 1052 w, 965 s, 950 s, 888 m, 847 w, 825 s, 781 s, 748 w, 721 w, 671 s

1,10-B₈C₂H₉CH₃^b

3090 w, 2920 s, 2530 s, 1450 s, 1173 s, 1088 s, 980 m, 962 m, 932 m, 894 m, 862 s, 811 s, 742 w, 687 s

$1,10-B_8C_2H_9(C_6H_5)^a$

3120 w, 2935 s, 2615 s, 1595 w, 1500 m, 1453 m, 1379 m, 1144 m, 1100 s, 934 w, 908 w, 857 w, 806 w, 755 s, 694 s

^a Nujol mull. ^b Neat film. ^c Combined 1-methyl and 6-methyl isomers.

corded on a Varian Associates A-60 spectrometer and the chemical shifts were measured relative to internal tetramethylsilane. The mass spectra were measured on a GEC-AEI, Ltd., Model MS-9 mass spectrometer. All melting points and nmr spectra were made in sealed capillaries and elemental analyses were conducted by Schwarzkopf Microanalytical Laboratories, Woodside, N. Y.

Vapor-phase chromatography (vpc) was performed with an Aerograph vapor-phase chromatograph, Model A-350-B, using 10-ft, 3/8-in. o.d. preparative, or 1/4-in. o.d. analytical, or 1/8 in. \times 50 ft columns packed with 20% Apiezon L on 60/80 HMDS Chromosorb P. Spinning-band distillations were carried out with a 3-ft Nester-Faust column. The vacuum-jacketed Vigreux column employed was of 40-cm length and 1.5-cm i.d.

All reactions were conducted under an atmosphere of nitrogen and subsequent manipulations were carried out with standard vacuum-line techniques or under a nitrogen atmosphere. The

TABLE III

The ¹H NMR Spectra of $B_6C_4H_8$, $B_7C_2H_9$, $1,6-B_8C_2H_{10}$, and $1,10-B_8C_2H_{10}$ and Their C-Monomethyl and C-Monophenyl Derivatives

• 1,401,011	C1	nemical shifts, 7	.a
	CH3	H	1H
$B_6C_2H_8$		5.2	5.2
		(1)	
$B_6C_2H_7CH_3$	7.9	5.1	
	(3)	(1)	
$B_6C_2H_7(C_6H_5)$		5.0	
		(1)	
$B_7C_2H_9$		4.4	4.4
		(1)	
$B_7C_2H_8CH_3$	7.5	4.7	
	(3)	(1)	
$B_7C_2H_8(C_6H_5)$		4.6	
$1,6-B_8C_2H_{10}$		8.1	4.8
		(1)	(1)
$1-CH_{8}-1, 6-B_{6}C_{2}H_{9}^{b}$	7.2	8.1	
	(3)	(1)	
$6-CH_{3}-1, 6-B_{8}C_{2}H_{9}b$	8.7	4.8	
	(3)	(1)	
$1-C_{6}H_{5}-1, 6-B_{8}C_{2}H_{9}$		8.0	
$1,10-B_8C_2H_{10}$		3.1	3,1
		(1)	
1-CH ₃ -1,10-B ₈ C ₂ H ₉	7.2	3.5	
	(3)	(1)	
$1-C_{6}H_{5}-1, 10-B_{8}C_{2}H_{9}$		3.3	

^a Chemical shifts relative to tetramethylsilane and relative areas are in parentheses. Spectra were recorded in carbon disulfide solution. ^b The spectra of these two isomers were recorded as a mixture.

analytically pure carboranes were transferred under high vacuum from the vpc collection U tube into another U tube containing a small portion of Fisher Scientific Co. Type 4A Molecular Sieve.

Pyrolysis of 1,3-Dicarba-nido-nonaborane(13) in Diphenyl Ether .-- Into a 250-ml three-necked flask equipped with a magnetic stirrer, Dry Ice reflux condenser, and a nitrogen inlet was placed 125 ml of diphenyl ether containing 10.0 g (88.6 mmol) of freshly sublimed B₇C₂H₁₃. This solution was heated under a nitrogen atmosphere at $225 \pm 5^{\circ}$ for 40 min. After cooling, the products were distilled from the solvent under nitrogen on a spinning-band column with 0° water in the reflux condenser. The products solidified in the still head and were washed from the still head with pentane after removing the original distillation pot. The volume of the pentane was reduced by distilling away the pentane under high vacuum using a vacuum-jacketed Vigreux column topped with a small sublimer cooled to -80° . The products were separated by preparative vpc by employing a preparative Apiezon L column at 135° and collecting the fractions at -80° in U tubes fitted at one end with a stopcock. The yields were: B₆C₂H₈, 2.2 g or 25%; B₇C₂H₉, 0.4 g or 4%; 1,6-B₈C₂- H_{10} , 2.0 g or 19%. Analytically pure samples were obtained by vpc on an analytical Apiezon L column at 100°.

Pyrolysis of 1-Methyl-1,3-dicarba-nido-nonaborane(13) in Diphenyl Ether.—The same apparatus was used here as in the above experiment. The reaction flask was charged with 8.8 g (69.3 mmol) of freshly distilled $B_7C_2H_{12}(CH_3)$ and 125 ml of diphenyl ether. The system was flushed with nitrogen and the solution heated at $220 \pm 5^{\circ}$ for 40 min. After cooling, the dark red-brown solution was transferred to a spinning-band column and the products were distilled at atmospheric pressure under nitrogen. Two fractions were collected. The first at 100° consisted of nearly pure $B_6C_2H_7(CH_3)$. The second fraction was collected between 120 and 165° and consisted of $B_6C_2H_7(CH_3)$, $B_7C_2H_8(CH_8)$, and 1,6- $B_8C_2H_9(CH_3)$. A third fraction collected above 165° consisted almost entirely of diphenyl ether. The components of the second fraction were separated by preparative vpc using a preparative Apiezon L column at 140°. The first cut and the $B_{6}C_{2}H_{7}(CH_{3})$ from the vpc separation of the second cut were combined giving the following yields: $B_{6}C_{2}H_{7}(CH_{3})$, 1.8 g or 24%; $B_{7}C_{2}H_{8}(CH_{3})$, 0.13 g or 1.5%; 1,6- $B_{8}C_{2}H_{9}(CH_{3})$, 1.7 g or 18%. Analytically pure samples were obtained by vpc on an analytical Apiezon L column at 125°.

Pyrolysis of 1-Phenyl-1,3-dicarba-nido-nonaborane(13) in Benzene.-Into a 1-1. magnetically stirred autoclave was placed 25 g (0.132 mol) of freshly sublimed $B_7C_2H_{12}(C_6H_5)$ and 150 ml of benzene. After flushing the autoclave with nitrogen, the temperature was brought up to and maintained at 225 \pm 10° for 40 min. The reaction was then cooled by passing water through the internal cooling coils. Caution: the reaction upon first reaching temperature was very exothermic and internal cooling coil water had to be available. After cooling to room temperature, the hydrogen pressure was released, the autoclave was opened, and the dark red-brown solution was transferred to a spinning-band distillation column. The bulk of the benzene was distilled off at atmospheric pressure under nitrogen. The residual benzene was distilled away under high vacuum and the products were alembically⁹ distilled under high vacuum using tap water in the cooling jacket. The products were separated by preparative vpc using a $^{3}/_{8}$ in. \times 20 ft SE-30 column at 210°. The products were collected at -80° in U tubes fitted with a stopcock. The yields of the products collected were as follows: $B_6C_2H_7(C_6H_5)$, 4.3 g or 19%; $B_7C_2H_8(C_6H_5)$, 0.95 g or 4%; 1,6- $B_8C_2H_9(C_6H_5)$, 5.3 g or 20%. Analytically pure samples were obtained by vpc on an analytical Apiezon L column at 195° for $B_6C_2H_7(C_6H_5)$ and $B_7C_2H_8(C_6H_5)$ and 210° for $1,6-B_8C_2H_9$ - $(C_6H_5).$

Pyrolysis of 1,3-Dicarba-nido-nonaborane(13) in Diphenyl Ether Solution in the Presence of Diborane.-The reaction vessel for the pyrolysis consisted of a 500-ml four-necked flask which was equipped with a mechanical stirrer, Dry Ice reflux condenser, thermometer, diborane inlet extending into the flask, and nitrogen inlet which also served as a vent for the excess diborane and hydrogen. The vented gases were passed through an acetone trap. Into the flask was placed 12.0 g (0.106 mol) of freshly sublimed B₇C₂H₁₈, 225 ml of diphenyl ether, and 0.5 ml of isopentane.¹⁰ After the system was flushed with nitrogen, the reaction vessel was rapidly brought up to and maintained at 215 \pm 5° for 45 min with stirring. Addition of a 5 molar excess of diborane to $B_7C_2H_{13}$ was started when the temperature reached 190° and was added at such a rate that it required 45 min to complete the addition. After cooling to room temperature, the dark brown solution was transferred to a spinning-band distillation column and the products were distilled from the solvent at atmospheric pressure under nitrogen. The condenser water was maintained at 0°. The solidified products were removed from the still head by removing the original distillation pot and washing out the products with pentane. With a vacuumjacketed Vigreux column topped with a sublimer maintained at $-80\,^{\circ}\text{,}$ the pentane was removed and the bulk of the 1,6-B_8C_2H_{10} was sublimed and collected. The remaining 1,6-B₈C₂H₁₀ and 1,7-B₁₀C₂H₁₂ were separated by preparative vpc using a preparative Apiezon L column at 140°. The sublimed $1,6-B_8C_2H_{10}$ contained a trace of $B_7C_2H_9$. The yield of the two $1,6-B_8C_2H_{10}$ fractions was 3.7 g or 29% and the $1,7-B_{10}C_2H_{12}$ was 0.4 g or 2%.

Pyrolysis of 1-Methyl-1,3-dicarba-nido-nonaborane(13) in Diphenyl Ether Solution in the Presence of Diborane.--The apparatus used here was the same as that used for the pyrolysis of $B_7C_2H_{13}$. Into the reaction flask was placed 10.0 g (79.0 mmol) of $B_7C_2H_{12}(CH_3)$ and 225 ml of diphenyl ether. The system was flushed with nitrogen and rapidly heated to $220 \pm 5^{\circ}$ for 45 min. Diborane addition was started at 190° and a 5 molar excess of diborane to $B_7C_2H_{12}(CH_3)$ was added as evenly as possible over this heating period. After cooling, the dark brown solution was transferred to a spinning-band distillation column and the products were distilled at atmospheric pressure under nitrogen. Three cuts were taken (100-152, 152-165, 165-200°) the second of which gave nearly pure $1.6-B_8C_2H_9(CH_3)$. The first fraction consisted of 1,6-B $_8C_2H_9(CH_3)$ with a small amount of $B_7C_2H_8(CH_3)$ and the third fraction consisted of $1,6-B_8C_2H_9$ - (CH_3) , 1,7-B₁₀C₂H₁₁(CH₃), and some diphenyl ether. The first and third fractions were separated by preparative vpc using an Apiezon L column at 180°. The two $1,6-B_8C_2H_9(CH_3)$ fractions were combined giving the following yields: $B_7C_2H_8(CH_3)$, trace; $1,6-B_8C_2H_9(CH_8)$, 3.5 g or 33%; $1,7-B_{10}C_2H_{11}(CH_3)$, 0.96 g or 8%.

Preparation of 1,10-B₈C₂H₁₀. General Procedure.—Into a thick-walled tube was placed 4.0 g of 1,6-B₈C₂H₁₀ which was sealed off under high vacuum. The sample was heated at $350 \pm 10^{\circ}$ for 12 hr in a bomb partially filled with diphenyl ether. After cooling, the tube was opened in the air and was rapidly transferred to a sublimer. No hydrogen pressure was observed when the tube was opened. The product was sublimed at room temperature to a -80° cold finger. The yield of 1,10-B₈C₂H₁₀ was 3.9 g or 98%. Analytically pure samples were obtained for the 1,10-B₈C₂H₁₀ and its 1-phenyl and 1-methyl derivatives by vpc on an analytical Apiezon L column at 110, 210, and 140°, respectively.

Preparation of 1,7-B₇C₂H₉.--In a typical preparation, 4.0 g (35.0 mmol) of freshly sublimed 1,3-B₇C₂H₁₃ was dissolved in 50 ml of diethyl ether and was slowly added with stirring to 1.5 g (37.0 mmol) of 60% sodium hydride dispersion in mineral oil. The reaction mixture was stirred an additional 5 min under nitrogen after addition of the carborane was complete. The ether solution was filtered and the solvent was evaporated under high vacuum to produce a thin oil. To this solution was added 75 ml of diphenyl ether and the resulting solution was heated at $200 \pm 10^{\circ}$ for 17 hr under a nitrogen atmosphere using 8° water in the condenser." After cooling, the residual diethyl ether and the product were distilled from the diphenyl ether under high vacuum at 70°. Purification was accomplished by high-vacuum fractionation employing a vacuum-jacketed Vigreux column topped with a sublimer maintained at -80° . The 1,7-B₇C₂H₉ was sublimed at 25° to a -80° cold finger and weighed 1.5 g (38%), mp 106–108°. The same procedure was used for the C-methyl derivative.

Acknowledgment.—This research was supported in part by the Office of Naval Research and Public Health Service Research Grant No. CA06773-06 from the National Cancer Institute. We also wish to thank Dr. Fred N. Tebbe for helpful discussions.

(11) Addition of a small amount of diethyl ether may be required to maintain a brisk reflux and wash sublimed material into the reaction flask.

⁽⁹⁾ Inorg. Syn., 10, 103 (1967).

 $^{(10)\,}$ The purpose of the isopentane was to wash sublimed carborane out of the condenser.